
CodeWarrior Development Studio for VSPA3
Architecture Application Binary Interface (ABI)
Reference Manual
Supports: VSPA3

NXP Semiconductors Document identifier: CWVSPA3ABIREF
Reference Manual Rev. 10.3.x, 07/2020

COMPANY CONFIDENTIAL

Contents
Chapter 1 Introduction... 5

Chapter 2 Low-Level Binary Interface..6
2.1 Endian Support..6
2.2 Fundamental Data Types.. 6

2.2.1 Pointers... 6
2.2.2 Mapping C Data Types to VSPA3 Architecture...7

2.3 Aggregates and Unions...7
2.4 Bit Fields..8
2.5 Function Calling Conventions..8

2.5.1 Argument Passing and Return Values.. 8
2.5.2 Using Registers in Calling Convention..9
2.5.3 Stack Frame Layout.. 9

2.6 VSPA Modes... 10
2.7 VSPA Syscall values... 10

Chapter 3 High-Level Language Issues...12
3.1 C Preprocessor Predefines... 12
3.2 Access to Architectural Features...12

Chapter 4 Object File Format...13
4.1 Interface Descriptions..13
4.2 ELF Header... 14
4.3 Sections...14

4.3.1 Special Sections..16
4.4 Symbol Table...16
4.5 Relocation..17

4.5.1 Relocation Types.. 17
4.5.2 Relocation Stack... 21

4.6 Program Headers.. 22
4.7 Debugging... 22

4.7.1 DWARF Register Number Mapping.. 23
4.8 VSPA Memory Spaces..23

Chapter 5 Assembler Syntax and Directives... 24
5.1 Assembler Significant Characters... 24
5.2 Assembler Directives...24

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 2 / 26

Figures
Figure 1. Stack Frame Layout ...10
Figure 2. Stack Frame Layout..14

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 3 / 26

Tables
Table 1. VSPA C Data Types ... 6
Table 2. VSPA3 C Data Types ... 7
Table 3. VSPA ELF sections ...15
Table 4. VSPA Additional Symbol Types ..17
Table 5. Relocation Type Definitions for VSPA3 .. 18
Table 6. Operations Performed on Relocation Values...21
Table 7. VSPA Register Number Mapping ... 23
Table 8. Memory spaces..23
Table 9. Assembler Significant Characters ...24
Table 10. Assembler Directives .. 24

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 4 / 26

Chapter 1
Introduction
The types of standards covered are as follows:

• Low-level run-time binary interface standards, such as:

— Processor-specific binary interface, consisting of the instruction set and representation of fundamental data types.

— Function calling conventions, specifying how arguments are passed and results are returned, how registers are
assigned, and how the calling stack is organized.

• Source-level standards, such as:

— C language, including preprocessor predefines, name mapping, and intrinsic functions.

• Assembler syntax and directives

Features defined in this ABI reference manual are mandatory unless specifically stated otherwise. Optional
features, if implemented, must conform to the ABI standards.

 NOTE

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 5 / 26

Chapter 2
Low-Level Binary Interface
The low-level binary interface for the VSPA3 architecture include:

• Processor-specific binary interface, consisting of the instruction set and representation of fundamental data types.

• Function calling conventions, specifying how arguments are passed and results are returned, how registers are assigned,
and how the calling stack is organized.

This chapter explains:

• Endian Support

• Fundamental Data Types

• Aggregates and Unions

• Bit Fields

• Function Calling Conventions

• VSPA Modes

• VSPA Syscall values

2.1 Endian Support
The VSPA architecture supports little-endian implementations. The bytes that form the supported data types are ordered in the
memory according to the least significant byte (LSB), located in the lowest address (byte 0).

2.2 Fundamental Data Types
The smallest addressable memory location is a 8-bit data type. The address of the 8-bit data types must be aligned to 8-bits
words; the address of the 16-bit data types must be aligned to 16-bits words; the address of the 32-bit data types must be aligned
to 32-bits words.

2.2.1 Pointers
Although a pointer takes up a full 32-bit word in a memory, . the data pointers are 21 bits wide and code pointers are 25 bits wide.

Table 1. VSPA C Data Types

Data Type Size (in bits) sizeof(T) Alignment (in bits)

T* 32 (21 bits used) 4 32

T(*)() 32 (25 bits used) 4 32

The high bits of a pointer in memory are undefined. Converting an integer type to a pointer and then back to an
integer type has an undefined behavior.

 NOTE

• Objects can only be accessed using are naturally aligned,

— For example, a 32-bit access must be 32-bit aligned

— Misaligned accesses are undefined

 NOTE

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 6 / 26

2.2.2 Mapping C Data Types to VSPA3 Architecture
VSPA3 architecture maps with the C data types as described in the following table:

Table 2. VSPA3 C Data Types

Data Type Size (in bits) sizeof(T) Alignment (in bits)

_Bool / bool 8 1 8

signed/unsigned char 8 1 8

signed/unsigned short 16 2 16

signed/unsigned int 32 4 32

signed/unsigned long 32 4 32

signed/unsigned long long 64 8 64

___fx16 (16- fixed-point) 16 2 16

__fp16 (16-bit floating point) 16 2 16

float 32 4 32

double 64 8 64

long double 64 8 64

_Imaginary float 32 4 32

_Imaginary double 64 8 64

_Imaginary __fp16 / __fx16 16 2 16

_Imaginary long double 64 8 64

_Complex float 64 8 64

_Complex double 128 16 128

_Complex __fp16 / __fx16 32 4 32

_Complex long double 128 16 128

VSPA3 supports 16-bit half-precision floating point (modified IEEE-754 format), 32-bit single-precision floating
point (modified IEEE-754 format), and 64-bit double-precision floating point (modified IEEE-754 format).

 NOTE

The sizeof() operator returns 1 for char, 2 for short, and 4 for int/long/float data type. This is because an 8-bit
word is the smallest addressable unit.

 NOTE

2.3 Aggregates and Unions
Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned component; that is, the
component with the largest alignment. The size of any object, including aggregates and unions, is always a multiple of the
alignment of the object. An array uses the same alignment as its elements. Structure and union objects may require padding to
meet size and alignment constraints:

• A structure or union with a size > 2 is always at least 32-bit word aligned and padded accordingly. So sizeof(<struct or
union>) will always be a multiple of 4.

• An entire structure or union object is aligned on the same boundary as its most strictly aligned member.

NXP Semiconductors
Low-Level Binary Interface

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 7 / 26

• Each member is assigned to the lowest available offset with the appropriate alignment. This may require internal padding,
depending on the previous member.

• If necessary, a structure's size is increased to make it a multiple of the structure's alignment. This may require tail
padding, depending on the last member.

 struct X1 { short x; }; // sizeof(X1) == 2; alignof(X1) == 2
 struct X2 { short x, y; }; // sizeof(X2) == 4; alignof(X2) == 4
 struct X3 { short x, y, z; }; // sizeof(X3) == 8; alignof(X3) == 4

2.4 Bit Fields
C struct and union definitions may have bit fields, defining integral objects with a specified number of bits. Bit fields exhibit the
property of same signedness as their underlying data type. In addition to the following rules, bit fields follow the same size and
alignment rules as other structure and union members:

• The bit fields are allocated from right to left (least to most significant).

• A bit field must entirely reside in a storage unit appropriate for its declared type. Thus, a bit field never crosses its unit
boundary.

• The bit fields share a storage unit with other structure and union bit field members if and only if there is sufficient space
within the storage unit.

• Unnamed bit fields' types do not affect the alignment of a structure or union, although an individual bit field's member
offsets obeys the alignment constraints. An unnamed, zero-width bit field shall prevent any further member, bit field or
other, from residing in the storage unit corresponding to the type of the zero-width bit field.

2.5 Function Calling Conventions
Compilers must support the conventions described in following sections:

• Argument Passing and Return Values

• Using Registers in Calling Convention

• Stack Frame Layout

2.5.1 Argument Passing and Return Values
The standard calling sequence requirements apply only to global functions. Local functions that are not reachable from other
compilation units may use different conventions. Nonetheless, it is recommended that all functions use the standard calling
sequences when possible. The C language programs follow the given conventions:

• The registers g0, g1, and a0 are available for return values.

• A function returning a function-pointer type uses g0.

• A function returning a non-function pointer type uses the a0 register to return the result.

• A function returning a non-pointer type T where sizeof(T) == 1 (8-bit word) or sizeof(T) == 2 (16-bit word) or sizeof(T)
== 4 (32-bit word) , uses the g0 register to return the result. 8-bit results are returned in bits 7-0, bits 31-8 are undefined.
16-bit results are returned in bits 15-0, bits 31-16 are undefined.

• A function returning a non-pointer type T where sizeof(T) == 8 (two 32-bit words), uses the g0 and g1 registers to
return the result. The lower address word is returned in the g0 register and the higher address word is returned in g1
register.

• All other functions use a caller allocated stack area to return the result in memory. The address of the stack area is
passed as an invisible parameter using the a0 register.

NXP Semiconductors
Low-Level Binary Interface

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 8 / 26

• The registers g0 - g5 and a0 - a5 (a1 - a5 for functions returning results in memory) are available for parameter passing.
Parameter registers are assigned in left-to-right order.

• Arguments that are part of a variable argument list are always passed by-value on the stack.

• A non-static C++ member function has an invisible class pointer parameter before all other parameters.

• A function-pointer type argument is passed in the first available "gX" register.

• A non-function pointer type argument is passed in the first available register. If there are no "aX" registers left, it is passed
on the stack.

• An argument with the non-pointer type T where sizeof(T) == 1 (8 -bit word) or sizeof(T) == 2 (16-bit word), is passed in
the first available "gX" register. If there are no "gX" registers left, it is passed on the stack. 16-bit arguments are passed in
bits 15-0, bits 31-16 are undefined. 8-bit arguments are passed in bits 7-0, bits 31-8 are undefined.

• An argument with the non-pointer type T where sizeof(T) == 8 (two 32-bit words) is passed in the first available "gX"
register pair (g0:g1, g1:g2, g2:g3, g3:g4, g4:g5). If there are no "gX" register pairs left, it is passed on the stack. The lower
address word is passed in the lower register and the higher address word is passed in the higher register.

• Stack arguments are passed by-value in a caller allocated argument stack area. This argument stack area starts at SP
upon entry of a function. The stack arguments are stored at properly aligned addresses, as if they had been pushed on
the stack in right-to-left order. For more details on Stack arguments, see Stack Frame Layout.

2.5.2 Using Registers in Calling Convention
The following registers are saved by the caller:

• g0- g7

• a0- a11

The following registers are saved by the callee, if actually used:

• g8- g11

• a12- a19

The register SP is used as Stack Pointer, whereas, the register a19 is used as Frame Pointer. In a function that does not require
a frame pointer, the frame pointer register is allocated for ordinary usage. Currently, the CodeWarrior compiler does not use
frame pointers.

2.5.3 Stack Frame Layout
The stack pointer points to the top (high address) of the stack frame. Space at higher addresses than the stack pointer is
considered invalid and may actually be un-addressable. Pushing a word onto the stack moves the stack pointer to a higher
address. The stack pointer value must always be aligned to a DMEM line. The outgoing arguments area is located at the top
(higher addresses) of the frame. The caller puts argument variables that do not fit in registers into the outgoing arguments area.
If all arguments fit in registers, this area is not required. A caller may allocate outgoing arguments space sufficient for the worst-
case call, use portions of it as necessary, and not change the stack pointer between calls. Local variables that do not fit into the
local registers are allocated space in the local variables area of the stack. If there are no such variables, this area is not required.
The caller must reserve stack space for return variables that do not fit in registers. This return buffer area is typically located with
the local variables, but it may be the address of a global variable. This space is typically allocated only in functions that make
calls returning structures. The following figure shows the stack frame layout.

NXP Semiconductors
Low-Level Binary Interface

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 9 / 26

Figure 1. Stack Frame Layout

2.6 VSPA Modes
CC update mode is disabled at startup (set.creg 4, 0) and assumed to be off while executing C code. The VCPU unit can run
in either 8-bit word addressing or 16-bit word addressing. The IPPU unit can also run in either 16-bit word addressing or 32-bit
word addressing. The only supported mode for VSPA3 is 8-bit addressing for VCPU and 16-bit addressing for IPPU. This mode
is enabled at startup and assumed to be on while executing C code. For VCPU the mode is enabled by setting the vspa_mode
creg field (set.creg 22, 0b10). For IPPU the mode is enabled by setting the ippu_legacy_mem_addr field of the IPPU_CONTROL
register (mv g0, 0x1000000; mvip 0x1c0, g0, 0x1000000). In order to take effect, this operation should be done while the IPPU
is not in the busy state.

The A0/A1/A2/A3 ranges cannot be used while executing C code. They must be set to the full data memory range.

 NOTE

Other VSPA modes are undefined.

2.7 VSPA Syscall values
It lists the syscall values that are defined and accepted in the VSPA environment.

Following syscall values are defined and accepted:

• SYSCALL_NONE 0

• SYSCALL_open 1

• SYSCALL_close 2

• SYSCALL_read 3

NXP Semiconductors
Low-Level Binary Interface

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 10 / 26

• SYSCALL_write 4

• SYSCALL_lseek 5

• SYSCALL_unlink 6

• SYSCALL_rename 7

• SYSCALL_clock 9

• SYSCALL_time 10

• SYSCALL_system 14

NXP Semiconductors
Low-Level Binary Interface

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 11 / 26

Chapter 3
High-Level Language Issues

• C Preprocessor Predefines

• Access to Architectural Features

3.1 C Preprocessor Predefines
The VSPA3 compiler supports the following macros:

• __VSPA__

An implicitly defined macro that expands to 1 if the compiler is generating the object code for VSPA family targets.

• __VSPA3__

An implicitly defined macro that expands to 1 if the compiler is generating the object code for VSPA3 targets.

• __ASSEMBLER__

A Preprocessor macro that gets defined to value 1 when the compiler is preprocessing an assembly file, i.e .sx files.

• __AU_COUNT__

A Preprocessor macro that specifies the number of VSPA AUs (2-64).

• __VSPA_SP__

An implicitly defined macro that expands to 1 if the compiler is generating the object code for VSPA target with a single
precision core.

• __VSPA_DP__

An implicitly defined macro that expands to 1 if the compiler is generating the object code for VSPA target with a double
precision core.

3.2 Access to Architectural Features
The supported intrinsic functions allows access to the hardware resources from a C application without using assembly language
instructions.

To use the supported intrinsic features, include the standard header file vspa/intrinsics.h in the source files
#include <vspa/intrinsics.h>. .

 NOTE

For more details on intrinsic functions, see VSPA Intrinsics Manual .

 NOTE

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 12 / 26

Chapter 4
Object File Format
The ELF is used for representing the binary application to the system.

For more information on ELF, see Tools Interface Standards (TIS) Executable and Linking Format (ELF)
Specification, Version 1.1.

 NOTE

This chapter explains:

• Interface Descriptions

• ELF Header

• Sections

• Symbol Table

• Relocation

• Program Headers

• Debugging

• VSPA Memory spaces

The chapter focuses on the interface for relocatable and executable programs. A relocatable program contains the code suitable
for linking and to create another relocatable program or executable program. An executable program contains binary information
suitable for loading and execution on a target processor.

4.1 Interface Descriptions
ELF represents two views of binary data, as shown in .

• Linking View: Provides data in a format suitable for incremental linking into a relocatable file or final linking to an
executable file.

• Execution View: Provides binary data in a format suitable for loading and execution.

An ELF header is always present in both the views of the ELF file. In the linking view, sections are the main entity in which
information is presented. A section header table provides information for interpretation and navigation through each section.

In the execution view, segments are the primary sources of information. Sections may be present but are not required. A program
header table provides information for interpretation and navigation through each segment.

For more details, see ELF version 1.1 specifications.

 NOTE

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 13 / 26

Figure 2. Stack Frame Layout

4.2 ELF Header
The following listing shows the ELF header structure.

Listing: ELF Header Structure

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
} Elf32_Ehdr;

The following listing shows an example of the VSPA -specific code:

Listing: VSPA Specifics

e_ident[EI_CLASS] = ELFCLASS32
e_ident[EI_DATA] = ELFDATA2LSB (little-endian memory mode)
e_machine: 16584 (0x40c8)

4.3 Sections
Sections are the main components of an ELF file. The section headers define all the information about a section. The following
listing shows an example of the section header.

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 14 / 26

Listing: Section Header Structure

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
} Elf32_Shdr;

lists the sections used in VSPA ELF binaries.

The section names listed in this table are case sensitive and are reserved for the system.

 NOTE

Table 3. VSPA ELF sections

Name (sh_name) Type (sh_type) Flags (sh_flags) Purpose

.text SHT_PROGBITS SHF_ALLOC,
SHF_EXECINSTR

VCPU Executable instructions
in VCPU program RAM

.rom SHT_PROGBITS SHF_ALLOC,SHF_EXECINS
TR

VCPU Executable instructions
in VCPU program ROM

.data SHT_PROGBITS SHF_ALLOC,SHF_WRITE Initialized data on VCPU

.rodata SHT_PROGBITS SHF_ALLOC Read-only, Initialized data on
VCPU

.bss SHT_NOBITS SHF_ALLOC, SHF_WRITE Uninitialized data on VCPU
(The contents of the .bss
section are zeroed when
loaded.)

.vbss SHT_NOBITS SHF_ALLOC, SHF_WRITE Uninitialized data on VCPU
(The contents of the .vbss
section are zeroed when
loaded.)

.ibss SHT_NOBITS SHF_ALLOC, SHF_WRITE Uninitialized data on IPPU
(The contents of the .ibss
section are zeroed when
loaded.)

.relasection SHT_RELA None Relocation information for
section (see "")

.symtab SHT_SYMTAB None Symbol Table

.shstrtab SHT_STRTAB None Section name string table

.strtab SHT_STRTAB None General purpose string table

Table continues on the next page...

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 15 / 26

Table 3. VSPA ELF sections (continued)

Name (sh_name) Type (sh_type) Flags (sh_flags) Purpose

.debug_abrev SHT_PROGBITS None Abbreviation tables (This
information is in DWARF2
format)

.debug_arranges SHT_PROGBITS None Address range tables (This
information is in DWARF2
format)

.debug_frame SHT_PROGBITS None Call frame information (This
information is in DWARF2
format)

.debug_info SHT_PROGBITS None Debugging information entries
(This information is in DWARF2
format)

.debug_line SHT_PROGBITS None Line number information (This
information is in DWARF2
format)

.debug _loc SHT_PROGBITS None Location lists (This information
is in DWARF2 format)

.debug_macinfo SHT_PROGBITS None Macro information (This
information is in DWARF2
format)

.debug_pubnames SHT_PROGBITS None Global name tables (This
information is in DWARF2
format)

4.3.1 Special Sections
The sections .vbss and .ibss are generated by the linker. All VCPU_COMMON symbols will be allocated within .vbss and all
IPPU_COMMON symbols will be allocated within .ibss. For more details, see Symbol Table

4.4 Symbol Table
An object file's symbol table holds information needed to locate and relocate a program's symbolic definitions and references.

The following listing shows a symbol table entry.

Listing: Symbol Table Entry

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;
} Elf32_Sym;

The symbols in ELF object files convey specific information to the linker and loader. The VSPA ELF uses two additional common
symbol types.

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 16 / 26

Table 4. VSPA Additional Symbol Types

Symbol Type Description

VCPU_COMMON The symbol labels a common block, which is used by the part
of the program running on the VCPU that has not been
allocated. The symbol's value gives alignment constraints,
similar to a section's sh_addralign member. The link editor
will allocate the storage for the symbol at an address that is a
multiple of st_value in the '.vbss' section. The symbol's size
specifies how many bytes are required.

IPPU_COMMON The symbol labels a common block, which is used by the part
of the program running on the IPPU that has not been
allocated. The symbol's value gives alignment constraints,
similar to a section's sh_addralign member. The link editor
will allocate the storage for the symbol at an address that is a
multiple of st_value in the '.ibss' section. The symbol's size
specifies how many bytes are required.

4.5 Relocation
Each section that contains relocatable data has a corresponding relocation section of type SHT_RELA. The sh_info field of the
relocation section defines the section header index of the section (hence referred as the "data section") to which the relocations
apply. The sh_link field of the relocation section defines the section header index of the associated symbol table. If section
names are used, the name of the relocation section is .rela prepended to the name of the data section.

A relocation entry is defined by the Elf32_Rela structure and associated macros as shown in the code listed below. The r_offset
field defines an offset into the data section to which the individual relocation applies. The r_info field specifies both the type of
the relocation and the symbol used in computation of the relocation data.

The relocation type is extracted from the r_info field using the ELF32_R_TYPE macro and the symbol number is extracted using
the ELF32_R_SYM macro. The r_info field is synthesized from the relocation type and symbol number using the ELF32_R_INFO
macro.

The " Relocation Value " is the value to be stored at the location defined by the r_offset field in the format specified by the
relocation type. In the relocation value is computed by adding the signed value of the r_addend field to the value of the symbol
indicated by the symbol number. Symbol number zero is treated as absolute zero where the relocation value is simply the value
of the r_addend field.

Listing: Relocation Entry Defined with Elf32_Rela

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;
} Elf32_Rela;
#define ELF32_R_SYM(i) ((i)>>8)
#define ELF32_R_TYPE(i) ((i)&0xff)
#define ELF32_R_INFO(s,t) (((s)<<8)|((t)&0xff))

4.5.1 Relocation Types
Device-specific relocations describe how a memory location should be patched by the linker. An ordinary relocation encodes
exactly one instruction operand (or, for data relocations, exactly one data value). The linker must ensure that the operand meets
the range and alignment requirement specified by the relocation. The following fields appear in each definition:

• Type : Specifies the value extracted using ELF32_R_TYPE, both as a number and as a standard C preprocessor symbol. A
brief abstract of the relocation follows in parentheses.

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 17 / 26

• Size : Specifies the number of bits used to represent the relocation value. If the operand range is a subset of the values
that can be represented in these bits, that restriction is indicated in parentheses.

• Bit position : Specifies the bit position of the relocation value within the full VLIW instruction of the address location that is
being relocated.

For example, a 17 bit relocation with LSB bit offset 2 with the VLIW instruction will appear as:

0000 0000 0000 0000 0000 0000 0000 0000 0000 0XXX XXXX XXXX XXXX XX00

• Shift : Specifies the number of bits the relocation value is right-shifted before it is encoded.

• Applies To : Specifies the instructions or directives that generate this relocation.

The following table lists and defines the relocation types.

Table 5. Relocation Type Definitions for VSPA3

Type Size LSB bit offset (in total
bits)

Shift Instructions/Directives
Generating This Relocation

R_VSPA_8 8 0 (in 8 bit field) 0 .1byte (debug section
relocations)

R_VSPA_16 16 0 (in 16 bit field) 0 .2byte (debug section
relocations)

R_VSPA_32 32 0 (in 32 bit field) 0 .4byte or .word (debug
section relocations)

R_VSPA_HW_LO_19 19 6 (in 64 bit field) 0 lower OpS

ld h,Iu19

st Iu19,h

R_VSPA_HW_HI_19 19 35 (in 64 bit field) 0 upper OpS

ld h,Iu19

st Iu19,h

R_VSPA_PMEM_25 25 24 (in 64 bit field) 2 jmp(.cc) Iu25

jsr(.cc) Iu25

loop_break(.cc) Iu25

swi(.cc) Iu16

R_VSPA_PMEM_25_O
FST

25 24 (in 64 bit field) 2 jmp(.cc) Iu25

jsr(.cc) Iu25

R_VSPA_LAB_32 32 2 (in 64 bit field) 0 add(.ucc)(.cc) gX, gY, I32 (sp
allowed)

add(.ucc)(.cc) gX, I32 (sp
allowed)

and(.cc) gX, gY, I32 (sp
allowed)

clrip Iu9, I32

cmp(.cc) gX, I32 (sp allowed)

Table continues on the next page...

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 18 / 26

Table 5. Relocation Type Definitions for VSPA3 (continued)

Type Size LSB bit offset (in total
bits)

Shift Instructions/Directives
Generating This Relocation

fadd(.ucc)(.cc) gX, gY, I32

fdiv(.cc) gX, gY, I32

fdiv gX, I32

floatx2n gX, gY, I32

fmul(.cc) gX, gY, I32

fmul gX, I32

fsub(.ucc)(.cc) gX, gY, I32

lfsr gX, gY, I32

mpy(.cc) gX, gY, I32

mpy(.cc) gX, I32

mv(.cc) gX, I32 (sp allowed)

mvip Iu9, I32

mvip Iu9, gX, I32

mvip gX, Iu9, I32

or(.cc) gX, gY, I32

or(.cc) gX, I32

push I32

setip Iu19, I32

st Iu19, I32

stw Iu19, I32

sub(.ucc)(.cc) gX, gY, I32 (sp
allowed)

sub(.ucc) gX, I32 (sp allowed)

xor(.cc) gX, gY, I32

xor(.cc) gX, I32

R_VSPA_LAB_IND_32 32 0 (in 64 bit field) 0 .word (for symbolic
relocations)

R_OCRAM_LAB_32 64 0 0 This relocation type is internal
to the linker to handle on-chip
shared RAM access from
VSPA through 'mv gX, I32'
instruction

R_OCRAM_LAB_IND_
32

32 0 (in 64 bit field) 0 This relocation type is internal
to the linker to handle on-chip
shared RAM access from
VSPA through .word

Table continues on the next page...

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 19 / 26

Table 5. Relocation Type Definitions for VSPA3 (continued)

Type Size LSB bit offset (in total
bits)

Shift Instructions/Directives
Generating This Relocation

assembler directive with
symbolic reference; for
example '.word
_ocram_sym_'

R_VSPA_LAB_22 22 24 (in 64 bit field) 0 cmp aX, I22

mv aX, I22

set.range range, aXg, I22

R_VSPA_SP_LO_20 20 2 (in 64 bit field) 2 mv sp, I20

R_VSPA_SP_HI_20 20 31 (in 64 bit field) 2 mv sp, I20

R_VSPA_LAB_S_19 19 24 (in 64 bit field) 0 add aX, I19

add aY, aX, I19

add aY, sp, I19

R_VSPA_DMEM_20 20 0 (in 64 bit field) 2 st I20, I32

stw I20, I32

R_VSPA_DMEM_21 21 34 (in 64 bit field) 1 sth I21, I16

R_B_VSPA_DMEM_22 22 2 (in 64 bit field) 0 ld gX, I22

ldb(.s) gX, I22

ldh(.s) gX, I22

ldw(.s) gX, I22

st I22, gX

stb I22, gX

sth I22, gX

stw I22, gX

R_VSPA_DMEM_22 22 32 (in 64 bit field) 0 stb I22, I8

R_VSPA_LAB_18 18 24 (in 64 bit field) 0 ld(.u) aYg, sp({I18})

ld(.u) gY, (aXg({I18}))

ld(.u) gY, (aXg)({I18})

ldb(.u)(.s) gY, aXg({I18})

ldh(.u)(.s) gY, aXg({I18})

ldh(.u)(.s) gY, sp({I18})

st(.u) (aXg({I18})), gY

st(.w) (aXg({I18}))

st(.u) (sp({I18})), aYg

Table continues on the next page...

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 20 / 26

Table 5. Relocation Type Definitions for VSPA3 (continued)

Type Size LSB bit offset (in total
bits)

Shift Instructions/Directives
Generating This Relocation

st(.u) (sp)({I18}), aYg

stb (aXg)({I18}), gY

stb(.u) (aXg({I18})), gY

sth (aXg)({I18}), gY

sth(.u) (aXg({I18})), gY

4.5.2 Relocation Stack
When the relocation value cannot be expressed as a simple symbolic value with an addend, then there are four special relocation
types to evaluate an arbitrary expression on a relocation stack. These four relocation types (push_pc, push, oper, pop) are
referred to as extended relocations. Other relocation types are ordinary relocations.

A relocation stack is a standard last-in-first-out data structure that contains 32-bit values. There is no arbitrary limit set on the
depth of the relocation stack of a hosted environment. Where as, an embedded environment may impose any limit on the stack
depth or omit the relocation stack entirely (effectively, a maximum stack depth of zero),

The following relocation types:

• 252 (R_VSPA_PUSH_PC)- Indicates the sum of the symbol value (the value of symbol number zero is zero), the signed
r_addend value, and the current location counter value should be pushed onto the relocation stack.

• 253 (R_VSPA_PUSH)- Indicates the sum of the symbol value (the value of symbol number zero is zero), and the signed
r_addend value should be pushed onto the relocation stack.

• 254 (R_VSPA_OPER)- Defines an operation to be performed on one or more stack values. The operation is specified by the
sum of the symbol value (the value of symbol number zero is zero), and the signed r_addend value should be pushed
onto the relocation stack.

• 255 (R_VSPA_POP)- Indicates the end of a relocation expression, to be relocated using an ordinary relocation type from
the below table. The relocation type is specified by the sum of the symbol value (the value of symbol number zero is zero)
and the signed r_addend value.

Operations are shown in the table below. In the table, Stack0 indicates the value on the top of the stack, and
Stack1 indicates the value one level beneath the top of the stack.

 NOTE

Table 6. Operations Performed on Relocation Values

Relocation Value Before After Operation

Stack0 Stack1 Stack0

8 Y X X-Y Subtraction

When the R_VSPA_POP operation is encountered, there should be exactly one value on the stack. This value becomes the new
relocation value for the ordinary relocation type specified in the R_VSPA_POP relocation.

The relocation engine will ensure that the stack is empty after the R_VSPA_POP, before an ordinary relocation, and after the linking
is complete. A sequence of relocations which causes a stack underflow does not conform to the ABI.

The symbolic relocation of ".data" section is:

.data

.word _a - _b

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 21 / 26

The following listing shows the relocations generated for the above section:

Listing: Program Header

Offset Addend Type Symbol

0x00000000 0x00000000 252 _a
0x00000000 0x00000000 252 _b
0x00000000 0x00000008 254 (symbol 0)}
0x00000000 0x0000000c 255 (symbol 0)

The above relocations mean that the symbols "_a" and "_b" are pushed on the relocation stack, the operation
executed is a subtraction (value 8 in the addend) and the result is a VSPA relocation of type 12
(R_VSPA_LAB_IND_32), specified in the addend.

 NOTE

4.6 Program Headers
Program headers are used to build an executable image in memory and are useful for executable files only. While section headers
may or may not be included in executable files, program headers are always present.

The following listing shows an example of program header.

Listing: Program Header

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;
}Elf32_Phdr;

The program header members are described as follows:

• p_type: Describes the type of program header. Only PT_LOAD and PT_NOTE are recognized as program header types.

• p_offset: Sets the offset from beginning of file to first byte of segment.

• p_vaddr: Describes the virtual address in memory of the first byte of the segment.

• p_paddr: Specifies the physical address in memory of the first byte of the segment.

• p_filesz: Shows the number of bytes in segment's file image.

• p_memsz: Sets the number of bytes in segment's memory image.

• p_flags: Shows the flags relevant to the segment. The defined flags are PF_R, PF_W, and PF_X.

• p_align: Describes the segment alignment requirements in file and memory.

4.7 Debugging
Tools for the VSPA architecture must use the Debug With Arbitrary Record Format (DWARF) debugging format, as defined in
the Tool Interface Standard (TIS) DWARF Debugging Information Format Specification, Version 2.0.

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 22 / 26

4.7.1 DWARF Register Number Mapping
outlines the register number mapping for the VSPA processor.

Table 7. VSPA Register Number Mapping

Register Name Number Abbreviation

General purpose register 0-11 g0-g11

Address storage register 12-27 as0-as15

Address register 28-31 a0-a3

Stack pointer 32 sp

Dummy return register 36 ret

4.8 VSPA Memory Spaces
This sections explains the Memory Space encoding enhancements. The address encoding for each of the VSPA memories are
no longer mixed with IDs, for identifying different physical regions.

The VSPA memory space is divided into the following:

• VCPU Program

• VSPA Data

• IPPU Program

• Physical (OCRAM)

• LUT

Each memory space is allocated with a standard ID. The user must specify the memory space ID while placing a section into it.

The memory space encoding takes into consideration the following aspects:

Table 8. Memory spaces

ID Memory space Start address Size

0 VCPU Program: vcpu_pram 0x0 0x08000000

1 VSPA Data: vcpu_dram 0x0 0x0080000

2 IPPU Program: ippu_pram 0x0 0x00001000

4 Physical: ocram 0x10000000 0xF0000000

5 LUT 0x0 0xF0000000

NXP Semiconductors
Object File Format

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 23 / 26

Chapter 5
Assembler Syntax and Directives

• Assembler Significant Characters

• Assembler Directives

In addition to the standard assembler directives and syntax specified in the GNU assembler documentation, VSPA assembler
also support the following assembler directives, special characters, and syntax specific to VSPA .

5.1 Assembler Significant Characters
VSPA assembler supports several significant one- and two-character sequences that can have multiple meanings depending on
the context. These characters are listed in the following table.

Table 9. Assembler Significant Characters

Character Meaning

; Use this character as instruction delimiter in multi-instructions
per line

// Use this character as comment delimiter.

{ } Use this character as instruction grouping delimiter

5.2 Assembler Directives
The VSPA assembler supports all the standard assembler directives listed in GNU assembler manual, as.pdf. The following table
lists the various VSPA target specific assembler directives and their respective type.

Table 10. Assembler Directives

Type Directive Description

Assembly Control .vcpu Assembles the instructions for VCPU
processing unit.

.ippu Assembles the instructions for IPPU
processing unit.

Symbol Definition .vcomm symbol, length [, align] Defines common symbol named symbol
for the VCPU core. The length parameter
specifies the number of bytes allocated
for the symbol. The optional align
parameter specifies the desired
alignment of the symbol expressed in
bytes.

.icomm symbol, length [, align] Defines common symbol named symbol
for the IPPU core. The length parameter
specifies the number of bytes allocated
for the symbol. The optional align
parameter specifies the desired
alignment of the symbol expressed in
bytes.

Table continues on the next page...

NXP Semiconductors

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 24 / 26

Table 10. Assembler Directives (continued)

Type Directive Description

Data definition and Storage Allocation .hfixed flonums Assembles VSPA 16-bit signed
magnitude fixed point constants (r
format). Note that this directive accepts
only either zero or even number of float
numbers.

.hfloat flonums Assembles IEEE 16-bit binary floating
point constants (h format). Note that this
directive accepts only either zero or even
number of float numbers.

Use .byte directive in the data initialization of symbol's definition, as the size of all the data types in VSPA3 build
tools is 8 -bit. Use .hword directive for 16-bit data. Use .word directive for 32-bit data.

 NOTE

NXP Semiconductors
Assembler Syntax and Directives

CodeWarrior Development Studio for VSPA3 Architecture Application Binary Interface (ABI) Reference Manual , Rev. 10.3.x, 07/2020
Reference Manual COMPANY CONFIDENTIAL 25 / 26

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07/2020
Document identifier: CWVSPA3ABIREF

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	Figures
	Tables
	1 Introduction
	2 Low-Level Binary Interface
	2.1 Endian Support
	2.2 Fundamental Data Types
	2.2.1 Pointers
	2.2.2 Mapping C Data Types to VSPA3 Architecture

	2.3 Aggregates and Unions
	2.4 Bit Fields
	2.5 Function Calling Conventions
	2.5.1 Argument Passing and Return Values
	2.5.2 Using Registers in Calling Convention
	2.5.3 Stack Frame Layout

	2.6 VSPA Modes
	2.7 VSPA Syscall values

	3 High-Level Language Issues
	3.1 C Preprocessor Predefines
	3.2 Access to Architectural Features

	4 Object File Format
	4.1 Interface Descriptions
	4.2 ELF Header
	4.3 Sections
	4.3.1 Special Sections

	4.4 Symbol Table
	4.5 Relocation
	4.5.1 Relocation Types
	4.5.2 Relocation Stack

	4.6 Program Headers
	4.7 Debugging
	4.7.1 DWARF Register Number Mapping

	4.8 VSPA Memory Spaces

	5 Assembler Syntax and Directives
	5.1 Assembler Significant Characters
	5.2 Assembler Directives

